06. Quiz: TensorFlow Cross Entropy
Cross Entropy in TensorFlow
As with the softmax function, TensorFlow has a function to do the cross entropy calculations for us.
Let's take what you learned from the video and create a cross entropy function in TensorFlow. To create a cross entropy function in TensorFlow, you'll need to use two new functions:
Reduce Sum
x = tf.reduce_sum([1, 2, 3, 4, 5]) # 15
The tf.reduce_sum()
function takes an array of numbers and sums them together.
Natural Log
x = tf.log(100.0) # 4.60517
This function does exactly what you would expect it to do. tf.log()
takes the natural log of a number.
Quiz
Print the cross entropy using softmax_data
and one_hot_encod_label
.
Start Quiz:
# Solution is available in the other "solution.py" tab
import tensorflow as tf
softmax_data = [0.7, 0.2, 0.1]
one_hot_data = [1.0, 0.0, 0.0]
softmax = tf.placeholder(tf.float32)
one_hot = tf.placeholder(tf.float32)
# TODO: Print cross entropy from session
# Quiz Solution
# Note: You can't run code in this tab
import tensorflow as tf
softmax_data = [0.7, 0.2, 0.1]
one_hot_data = [1.0, 0.0, 0.0]
softmax = tf.placeholder(tf.float32)
one_hot = tf.placeholder(tf.float32)
# ToDo: Print cross entropy from session
cross_entropy = -tf.reduce_sum(tf.multiply(one_hot, tf.log(softmax)))
with tf.Session() as sess:
print(sess.run(cross_entropy, feed_dict={softmax: softmax_data, one_hot: one_hot_data}))
User's Answer:
(Note: The answer done by the user is not guaranteed to be correct)
# Solution is available in the other "solution.py" tab
import tensorflow as tf
softmax_data = [0.7, 0.2, 0.1]
one_hot_data = [1.0, 0.0, 0.0]
softmax = tf.placeholder(tf.float32)
one_hot = tf.placeholder(tf.float32)
# TODO: Print cross entropy from session
x = -tf.reduce_sum(tf.multiply(one_hot,tf.log(softmax)))
with tf.Session() as sess:
print(sess.run(x, feed_dict={softmax: softmax_data, one_hot: one_hot_data}))
# Quiz Solution
# Note: You can't run code in this tab
import tensorflow as tf
softmax_data = [0.7, 0.2, 0.1]
one_hot_data = [1.0, 0.0, 0.0]
softmax = tf.placeholder(tf.float32)
one_hot = tf.placeholder(tf.float32)
# ToDo: Print cross entropy from session
cross_entropy = -tf.reduce_sum(tf.multiply(one_hot, tf.log(softmax)))
with tf.Session() as sess:
print(sess.run(cross_entropy, feed_dict={softmax: softmax_data, one_hot: one_hot_data}))